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1.0 EXECUTIVE SUMMARY

This report summarizes the results of a 3-yr investigation into the role of light-scattering noise in
nonlinear optical processes. These results span a full range--from physical and mathematical
description and prediction of noise properties to experimental verification of the theory and

tempretation of measurements. Light-scattering noise fluctuations are shown to set fundamental
limits on device size and sensitivity and on beam power requirements for nonlinear optical
processes. Fundamental limits to optical phase conjugation and to weak signal amplifiation via
two-wave mixing are derived through a statistical thermodynamic treatment based on the
fluctuation-dissipation theorem. In particular, power dissipation in a nonlinear optical medium
during the coherent transfer of energy from a pump to a signal beam will be examined, and
quantitatively relate this dissipation to the spectrum of quantum/thermal fluctuations that give
rise to light-scattering noise. Several classes of nonlinear optical materials are discussed,
including resonant and nonresonant Kerr media and photorefractiv,- glasses. Results from
experiments carried out at the Science Center and in collaboration with the University of Rome
(Rome, Italy) are analyzed and compared with computer simulations of beam propagation and
light-scattering noise using the stochastic noise model.

The scientific output from the noise investigations includes two invited presentations (Snowbird
and SPIE), numerous contributed papers, and many publications that have appeared in journals
such as Physical Review (four papers), Applied Physics Letters (two papers) and JOSA B (two
papers). Several additional papers are in the final stages of preparation. The project has been
extremely productive both from our own viewpoint and from the many independent reviewers
who have assessed the importance of our work, as well as from experimentalists who have
undertaken extensive measurements to confirm and extend our results. The experiments of
Sternklar et al. (Ref. 1), in particular, present a new application of our results to Brillouin two-
beam coupling and confirm our prediction of strong signal-to-noise ratio dependence on
pump intensity. Earlier studies of Brillouin amplifiers (e.g., Bespalov et al.) neglected pump
dependence. The experiments of Sternklar et al. confirm our fluctuation-dissipation relation for
the amplitude of dielectric fluctuations in terms of the temperature, beam interaction volume, and
Kerr coefficient (Refs. 2-8). More detailed confirmation can be found in the experiments of
Pizzofemto et al. (Ref. 9), which also examine the frequency dependence of the noise
accompanying two-wave mixing in a Kerr medium. The experiments of Chang et al. (Ref. 11)
extend the measurements of noise to photorefractive media and confirm the predictions obtained
for this class of materials under the present contract.
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It is believed that with further development the results will serve as the scientific basis necessary

for the design of new low-noise nonlinear optical materials-probably with best prospects in the

general classes of photorefractive polymers and charge transfer media. Furthermore, our results

can provide the foundation for future investigations into the noise properties of optical

communication channels and optical storage media. These future investigations can include

determination of the Shannon channel capacity (some work along these lines has already been

carried out for photorefractive media) and new applications of optical signal processing and

computing (e.g., the optical wavelet transform and optical methods for signal and image.

compression).
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2.0 INTRODUCTION

Most treatments of optical phase conjugation and two-wave mixing do not address the role of
noise; others include quantum noise in the incoming electromagnetic fields, but neglect

temperature-dependent noise arising from fluctuations inherent in the nonlinear medium itself.
Such fluctuations are important to consider to the extent that they reduce the fidelity of an optical
signal by giving rise to scattered light.

Studies were done on light-scattering noise for continuous wave (cw) nonlinear optical processes
using Kerr and artificial Kerr media (Refs. 2-9) and for similar processes using the
photorefractive effect (Refs. 10 and 11). In the former case, a fundamental connection between
light scattering fluctuations &B in the medium and the nonlinear dielectric constant e2 was

derived in the form of a static susceptibility relation (Ref. 4) and was applied to a study of light-
scattering noise in the phase conjugate signal obtained through degenerate four-wave mixing
(Refs. 5 and 6). Time-averaged noise powers were determined and were of order kTv where k is
the Boltzmann constant, T is temperature, and v is the optical frequency. At room temperature
and visible wavelengths, kTv is in the microwatt range. The static susceptibility between e2 and
&B was extended in a more recent article and applied to four-wave mixing in Kerr media with

nonlocal interactions near a critical point (Ref. 5). Throughout the following, the noise arising
from thetfluctuations 8e equivalently will be referred to as either thermal or light-scattering

noise.

For many optical signal processing applications a more complete description of noise than is
furnished by the time-averaged noise power is desired. This additional information might

include, for example, the effect of light-scattering noise fluctuations on the output light intensity
of a nonlinear optical device in real time. For image processing applications, such as the use of
optical phase conjugation to correct aberration, the effects of light-scattering noise on the
amplitude and phase of the electromagnetic field itself must be included. In the following

sections, stochastic simulations for light-scattering noise are developed; the simulations provide

a direct means through which this additional information may be obtained. In the following
sections, the theory of light-scattering noise in Kerr media is extended using the fluctuation-
dissipation theorem (Ref. 6). This generalization of the static susceptibility relation is required
for applications to time-dependent processes and noalinear optical media exhibiting power
dissipation. An important example of such a process is the amplification of a weak optical signal

via the coherent transfer of energy from a strong pump beam during nondegenerate two-wave
mixing (Refs. 7-9). Reference 6 presents the basis for stochastic noise simulation using Langevin
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and generalized Langevin models to relate the time decay of laser-induced gratings to the thermal

fluctuations responsible for light-scattering noise. Applications to the nonlinear optical processes

of phase conjugation, via degenerate four-wave mixing (Ref. 6), and to weak signal

amplification, via nondegenerate two-wave mixing (Refs. 7-9), were obtained as part of the
study.

Figure I shows a schematic depiction of the origins of light-scattering noise. The solid arrows

show incoming and outgoing signal beams with a volume element of the nonlinear medium

while the dashed arrows show the scattered light noise. The amplitudes and time-correlation

properties of the signal and noise gratings (fluctuations in the dielectric constant of the medium)

are connected through the fluctuation-dissipation relation described below. For Kerr media, the

signal response and noise properties are connected via the fluctuation-dissipation theorem to

thermal fluctuations in density. For photorefractive media, the signal is connected to thermal

fluctuations in the space-charge field. Photorefractive noise, however, is due to scattered light

from both thermal fluctuations in the space-charge field and thermal fluctuations in density. Thus

for a photorefractive medium, the Kerr coefficient needs to be determined to completely describe

the noise (Refs. 10 and 11).

Photoemfractive Thermal Fluctuations
Effect ".in the Space-Charge

•. • Field

Kerr Effect "Thermal Fluctuations

In Dons"t

Figure 1. Light-scattering noise.
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3.0 LIGHT-SCATTERING NOISE IN PHOTOREFRACTIVE MEDIA

Photorefractive media constitute a large and versatile class of nonlinear optical materials with
applications to holographic storage as well as to real-time optical information processing. Two
closely related theoretical models of the photorefractive effect have been put forth (Refs. 12 and
13) and successfully used over the past decade by a number of investigators for the description of
nonlinear optical processes including optical phase conjugation and coherent beam combination
via two-wave mixing. Nevertheless, few studies have been directed at quantifying the *
fundamental limits to the photorefractive effect set by noise. In particular, questions related to the
noise limits on photorefractive sensitivity to weak incident signal powers (dynamic range)
apparently have not been addressed. The present study shows that noise limits to the dynamic
range of a photorefractive medium are inherent in the photorefractive effect itself. The
quantitative determination of these limits is the foremost objective of this section.

3.1 ORIGINS OF THE PHOTOREFRACTIVE EFFECT

Initiation of the photorefractive effect occurs when a spatial variation of light intensity incident
on the medium causes a redistribution of charge density and buildup of a space-charge field. For
example, let the spatial light intensity distribution follow the simple sinusoidal grating form

I(x) = 10[1 + m cos(qx)] (1)

characterized by average intensity IO, grating wave vector q, and intensity modulation ratio m.

The intensity grating induces a corresponding density of the form

n(x) = n0[1 + w cos(qx)] (2)

where no is the average density. In the hopping model, n refers to the number density of hopping
carriers of charge qe. In the Kukhtarev model, n refers to the number density of unionized donor

sites.

A comparison of the Kukhtarev and hopping models is presented in Figure 2. Each model
assumes a uniform population of fixed sites as well as a uniform distribution of fixed
countercharges to maintain overall charge neutrality. In the hopping model, the fixed sites may
be occupied by a smaller number of mobile carriers of charge q.. The latter are assumed to hop
from site to site with a hopping rate that is proportional to the local light intensity. The net effect
is to cause the carriers to diffuse from regions of higher to regions of lower light intensity. As a
result, the density modulation ratio w in Equation 2 is opposite in sign to the intensity
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modulation ratio, m. In the Kukhtarev model, the fixed sites are occupied with a smaller number

of valence band carriers whose charge may be either positive or negative. For definiteness, the

carriers in both models are assumed to be electrons of charge q. = e = - lel. Mobility of carriers in

the Kukhtarev model requires excitation from the valence band into the conduction band

(depicted by the shaded region in Fig. 2) at a rate that is proportional to the light intensity.

Generation and recombination of carriers is a fast process compared to the overall redistribution

of charge, and the number of carriers in the conduction band at any given time is negligible

compared to the number of valence band carriers (donors). Redistribution of charge in the

Kukhtarev model may, therefore, be thought of as due to the redistribution of the donor

population through accumulated generation, recombination, and transport of carriers via the

conduction band. The index change induced by the space-charge field occurs through the Pockels

effect as described below.

0. -0 CARRIER (q)
0 0 0

- rr rrm rr, r n'mn --- FIXED SITES

*0 0

",*- FIXED COUNTERCHARGE

HOPPING MODEL

-CONDUCTION
BAND

DONOR ------- CARRIER (

. : .--- FIXED SITES
. 4, .a.e d 4

• e T .. T e -- -

IONIZED DONOR FIXED COUNTERCHARGE

KUKHTAREV MODEL

Figure 2. Photorefractive glasses: comparison of hopping and Kukhtarev models.

To simplify the present analysis, contributions to grating formation from the photocurrent, dark

current, and externally applied electric fields will be neglected. The contributions from higher

order gratings will also be neglected since the primary interest is in the small modulation ratio

limit. The various components of the grating free-energy will now be derived. These include

contributions from energy storage in the space-charge field, configurational entropy, and the free

energy associated with exposure of the donor or hopping sites, depending on which model is

used, to a spatially varying light intensity.

6



3.2 THERMAL FLUCTUATIONS IN THE SPACE-CHARGE FIELD

Fluctuations in the space-charge field are determined by the free-energy change that accompanies

the fluctuation. The free energy is, in turn, made up of energy and entropy contributions as
described in Reference 10. In the diffusion limit, the energy contribution dominates and thermal
fluctuations in the space-charge field may be obtained immediately from the equipartition of

energy stored in the space-charge field

Use = (eoyt8) I E,2 (x) dx = (C3Vs/8x) < I 8Escl2> = kT/2 (3)

In the absence of an entropic contribution, Use is equal to the free energy. Rewriting the last

equality gives

<I 8Esc(q)12>diff limit = (4xkT/IeOVs) (4)

The general result is (Ref. 10)

<I IEs(q)12 > = (4tkT/e0 Vs) [I + (q/kD)2]-l (5)

where q is the magnitude of the grating wave vector and kD is the reciprocal Debye length. The

difference between Equations 4 and 5 is due to the entropic contribution with the square bracket

factor accounting for nonlocal interaction (Ref. 10).

3.3 LIGHT-SCATTERING FLUCTUATIONS ASSOCIATED WITH THE
PHOTOREFRACTIVE EFFECT

Dielectric fluctuations that originate from fluctuations in the space-charge field follow
immediately from Equation 5 through the Pockels effect

8e fi e(2) osc (6)

where e(2) is related to the electro-optic tensor, r, and the refractive index of the medium, nR. The
standard relations An = -(l/2)nR3rE, for the index change, and Ae = 2nRAn yield

e(2) = -nR4r (7)

Combining Equation 5 for the mean-square fluctuations in the space-charge field with Equation 6

gives

< I=(q)12>FR (4xkT/joVs) [I + (q/kD)2 ]-l[E( 2)]2  (8)

7



A subscript PR has been added to designate those fluctuations associated with the photorefractive
effect. Equation 8 is the central result of Reference 10. It provides the extension of our previous
investigations of light-scattering noise in Kerr media to materials exhibiting the photorefractive

effect.

3.4 LIGHT-SCATTERING FLUCTUATIONS IN PHOTOREFRACTIVE MEDIA
ASSOCIATED WITH THE OPTICAL KERR EFFECT

Dielectric fluctuations arise in all media (including photorefractives) that exhibit a Kerr.effect
(Ref. 4) and, therefore, contribute to light-scattering noise. These fluctuations originate from
thermal fluctuations in the density, which through the Clausius-Mossotti constant D/p induce

corresponding fluctuations in the dielectric constant independent of the photorefractive effect
(Ref. 5). From Reference 5

< I be(q)12>K = 8xkTe2 (q)/Vs = (8xkTe2/Vs) [1 + (q/q0 )2 ]-1  (9)

where e2(q) is the Kerr coefficient and q0 is the reciprocal correlation length. Generally, for Kerr
media q/qo << 1 and this is true for the photorefractive media whose noise properties were

studied (Ref. 11). The inequality breaks down when the correlation length approaches the
wavelength of light as can occur close to a critical point (the case for which Eq. 9 was originally
derived in Ref. 5). The purpose of including the general result here is to note its similarity with
Equation 8 for the dielectric fluctuations associated with the photorefractive effect. Apart from
the physical distinction between the correlation length and the Debye screening length in the two
models, the forms differ only by a nondimensional factor 2EO E2/[E(2)]2.

3.5 ESTIMATES OF DYNAMIC RANGE AND COMPARISON WITH EXPERIMENT

The methods developed in the preceding subsections are illustrated in this subsection for the
write and readout of a simple sinusoidal grating using the configuration shown in Figure 3. For
the writing beam configuration of Figure 3, the intensity modulation ratio is:

m = 2(I1i2)112/(Il + 12) (10)

where 11 and 12 are the intensities for the pump (I1) and signal (12) beams. For light of wave
vector K1 = K2 = K, the resulting grating is of wave vector q = Iql:

q = 2K sin(O/2) (11)

8



where 0 is the angle between the writing beams. Both K and 0 are measured in the material with

refractive index nR.

100

S10(a ) B a T iO 3

0• 10-8

0-'S....' '

5 10"-• 0,

10"10 10 106 10 4  10.2 100

Writing Beam Ratio (J3)

Figure 3. Measurements of dynamic range (from Ref. 11).

In the read stage (Fig. 3), the intensity of the diffracted beam (signal plus noise) is proportional

to the square of the total grating amplitude

Ifj - (a, + 8a,)2 (12)

where a, and 8ai are the amplitudes of the signal and noise grating components, respectively

(Ref. 10):

a, = -(kTq/e) [ I + (q/kD)2]-Ie(2)m (13)

The noise grating component is Gaussian distributed with mean

< 8a,> = 0 (14a)

and variance

< I 8a1 12> = 2 < 1812> (14b)

9



The factor of 2 in Equation 14b corrects for averaging the square of the sinusoidal spatial
dependence of Be over the beam interaction volume. The right-hand side of Equation 14b is

evaluated using Equation 8 or 9, depending on whether the noise in question is associated with

the Kerr or photorefractive effects.

Experimentally, it is expedient to conduct measurements under the condition that q = kD since it

follows from Equation 13 that the diffraction efficiency is maximized when this condition is
satisfied. Under this condition the signal-to-noise ratio (Ref. 10) from is n0 Vsm 2/4, which equals

unity for a writing beam intensity ratio 12/1l = 1/(n0 Vs). Figure 4 from Reference 10 shows a

calculation of light-scattering noise in the diffracted read beam for BaTiO 3 under the maximum

diffraction efficiency condition. The figure shows the logarithm of the diffracted read beam

power (in arbitrary units due to the unknown prefactor in Eq. 12) versus the logarithm of the
writing beam ratio I2/I1. The beam interaction volume was set equal to the product of the beam

cross section area and the interaction length. For the present calculation, the beam diameter was

set at 0.15 cm and the interaction length at 0.2 cm, corresponding to the experimental

measurement conditions used in Reference 11. Other parameters used in the calculation, which
were chosen as representative of BaTiO 3, are listed in Reference 10. As described below, the

light-scattering fluctuations associated with the Kerr effect are relatively less important for
BaTiO 3 and were omitted from the calculation of Figure 4. This will not always be the case for

other photorefractive materials as shown below.

:-05-
S

o~ 3~

-10-

S2
-15 L =0.2 cm

D0.15 cmflS :'..;.q -kD

-20-
* t I * *

-16 -12 -8 -4 0
LOG (WRITING BEAM RATIO)

Figure 4. Light-scattering noise simulation (from Ref. 10).
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To obtain Figure 4, the right-hand side of Equation 14b for the noise variance was evaluated

using Equation 8 with q = kD. To generate the figure, the x-coordinate (log writing beam ratio)

was randomly selected, with uniform distribution along the scale of the figure. Next, the signal
grating amplitude a, was obtained from Equation 13 with m from Equation 10. Finally, a value
for 8a, was sampled from the Gaussian distribution having mean and variance specified by

Equations 14a and 14b. Gaussian probability sampling was achieved using a standard computer
program incorporating the Box-Muller transformation for the generation of normal deviates from
random numbers sampled uniformly on the interval (0, 1). The above procedure was repeated a
thousand times to obtain an equal number of points for good statistical sampling of the noise.

Expansion of the right-hand side of Equation 12 gives three terms, each corresponding to a
different region seen in Figure 4. The first term (a1

2) dominates in the high probe power (low

noise) region. In this case, the linear behavior (with unit slope) predicted from Equation 10 for
12 < 0.1 11 is observed. As the probe power is reduced further, the next-to-leading term in the

expansion (2aala) begins to play a role. This term, which vanishes op ti-. averaging, results in

a symmetric distribution of scatter about the average diffracted beam power due to noise. This
behavior is seen in the mild noise region of Figure 4. With still further reduction of probe power
(i.e., reduction of a,), the third term in the expansion (ba1

2) begins to dominate. This last term,

which does not vanish on time averaging, results in a diffracted power due entirely to noise. The
resulting scatter is independent of the power in the probe since in this region the signal grating
amplitude is much smaller than the RMS fluctuation amplitude due to noise. This effect is best
seen in the smallest writing beam ratio range of Figure 4. The probe power level for which the
signal-to-noise ratio is unity may be computed analytically. For the present values of Vs and n0,
one obtains 12/11 = 5.9 x 10-15 for S/NpR = 1.

Equations 8 and 9 are compared for their relative importance in limiting the dynamic range of a
photorefractive medium. Setting (m12)K = a(ml 2)pR one obtains for a:

a = peo E2[E(2)]2) [ I + (q/kD)2]

= (4e0n2/(nR7r2 )) [ I + (q/kD)2] (15)

For BaTiO3, the parameters collected in Reference 10 yield a value of 0.035 for the expression in

curly brackets and dynamic range is limited by thermal fluctuations in the space-charge field. For

different materials and/or different writing beam configurations, the curly bracketed expression
in Equation 15 may easily exceed unity; in which case light-scattering noise associated with the
Kerr effect will dominate. Values of oa are computed for several other photorefractive materials

11



in Reference 11. There one finds a values of 0.93 for KNbO3 , 1.56 for BSKNN, and 3.75 for

SBN; all for the maximum diffraction efficiency condition q/kD=l (Table 1). Thus for KNbO 3

and BSKNN, it is predicted that the thermal light-scattering fluctuations associated with the Kerr

and photorefractive effects are of comparable size, while for SBN, fluctuations associated with

the Kerr effect are of greater importance to limiting dynamic range.

Table 1. Calculated fundamental limit on the dynamic range
due to the various noise sources discussed.

Type of Minimum
Noise Beam Ratio BaTiO 3  BSKNN-11 KNbO 3  SBN:60

Photon Shot 5.3 x 10-18 3.1 x 10-17 4.9 x 10-17 3.4 x 10-17
Noise

Photorefracive (31x min 2.6 x 10-15 2.3 x 10-14 1.4 x 10-15 6.4 x 10-16
Noise

Kerr Noise [Pkewr, min 3.0 x 10-16 3.6 x 10-14 1.3 x 10-15 2.4 x 10-15

Finally, note that there will be a photon shot noise contribution arising from fluctuations in the

incident intensity of the weak writing beam when the latter becomes sufficiently small that few

photons from this beam arrive during the time required for photorefractive grating formation

(Ref. 11). The photon shot noise limits to the minimum writing beam ratio were evaluated for

each of the various photorefractive materials listed above and were in the 10-16 to 10-17 range

(Ref. 11) Thus, for these materials, the photon shot noise is predicted to be about 1-2 orders of

magnitude smaller than the thermal noise associated with either the Kerr or photorefractive

effects. The results presented in this section suggest a very large dynamical range for

photorefractive materials that should prove useful in optical signal processing applications.

Experimental measurements for the dynamic range using BaTiO 3 as the recording medium are

shown in Figure 3 from Reference 11 (note the similarity to the theoretical calculations of

Fig. 4). In this case the measured dynamic range is large but not as large as predicted due to the

limitatiom of detector noise in the experiments. The presently available measurements, therefore,

serve only as an upper bound to the fundamental noise limits of photorefractive media. Note that

the noise properties of photorefractives are qualitatively different from those of Kerr media. For

the latter, light-scattering noise is significant at room temperatures even for signal powers in the
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milliwatt range. Differences are predominantly in the physical mechanisms underlying formation

of the signal grating (Ref. 10). Finally, note that analytic expressions for the signal-to-noise ratio,

based on the preceding results, provide the means for predicting the channel capacity of a

photorefractive medium (bits/sec) for signal processing applications.
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4.0 GENERAL THEORY OF LIGHT-SCATTERING NOISE IN KERR MEDIA

An overview of light-scattering fluctuations and their connection to nonlinear optical response
may be gained through an examination of the Maxwell equations governing beam propagation in
a nonlinear medium:

V x E(rt) = -(I/c)aH(r,t)/at (16a)

V x H(r,t) = (I/c)iD(r,t)/9t (16b)

with

D(r,t) - [so + &8(r,t) + E2!F (r,t)] E(r,t) (16c)

In these equations, E(H) is the total electric (magnetic) field vector; £0 (e2) is the linear
(nonlinear) dielectric constant of the medium; D(r,t) is the displacement vector; and the overbar
implies a time average that is long compared to an optical period, but short compared to all other
time scales that enter the problem. Equation 16c contains both the nonlinear contribution and the
fluctuation contribution to the dielectric constant. The symbols 8& and Ae = E2 are used
throughout this report to designate variations in the dielectric constant of the medium due to
spontaneous fluctuations and to field-induced response, respectively. The fluctuation
contribution plays a role in nonlinear optics analogous to the current or voltage fluctuations that
give rise to Johnson noise in electrical systems. Both sources of noise are thermal in origin and
proportional to kT. In the present case, fluctuations in the linear dielectric constant give rise to
noise as they result in the formation of spontaneous gratings that are "read" by the applied laser
fields to give a scattered light component that is indistinguishable from the desired output of the
nonlinear optical device.

4.1 LIGHT-SCATTERING FLUCTUATIONS AND NONLINEAR OPTICAL
BESEPENE

At nonzero temperature T, thermal fluctuations in the linear dielectric constant of the optical
Kerr medium give rise to fluctuation gratings capable of scattering incident radiation. More
precisely, the fluctuations in the linear dielectric constant, &8(r,t), can be decomposed into
grating components, &8(q,t):

8e(r,t) = X &(qt) €-iqor (17)

with
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8e(q) - (I/Vs)J eiqr&e(r)d3r (18)

where the summation is over all grating wave vectors q, and the integral is over the beam

intraction volume Vs.

For an isotropic Kerr medium with local interactions

e(r) = eo + e.2 E (r) (19)

and Fourier transformation (Eq. 18) gives

e(q) = eoS(q) + e2 E2(q) .(20)

A nonlocal generalization of Equation 19 may be written in terms of the convolution integral:

e(r) = P0 + J e2 (r - r')E2(r') d3r' (21)

for an isotropic medium. Fourier transformation gives

e(q) = e8(q) + .2(q)E2(q) (22)

"Tbis result is identical in form to Equation 20 except for the q-dependence in e2, which becomes

al;ott when the range of correlations in the medium approaches the wavelength of light

(Ref. 5).

The remainder of this section shows that the fluctuation-dissipation theorem provides a
fundamental closure relation between the nonlinear coefficient e2 and the statistical distribution

detmmining the fluctuations 8e for incorporation into Equation 16c.

4.2 APPLICATION OF THE FLUCTUATION-DISSIPATION THEOREM

Preliminary to applying the fluctuation-dissipation theorem, the appropriate conjugate variables

must be defined. For this purpose, it is sufficient to note that the energy change in the medium

due to the nonlinear polarization is of the form

U(r,t) = -(1/Sf)Ae(rt) E2 (rt) (23)

where Ae is the change in the dielectric constant in the presence of an applied laser field.

Accordingly, the field energy variable u(r,t) = (1/8x) E2 is conjugate to A& and one may define

the complex frequency-dependent susceptibility Ze such that:
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Ae(q,.f) = X(q,Ql) u(q,fl) (24)

with 7. = 7e'+ i X.". In particular, it follows from Equation 24 for a Kerr medium

(Ae(q,O) = e2(q)E2(q)) that XE(q,O) = 8x e2(q) = X'(q,0).

The power, P, expanded by the applied fields on the medium electric polarization is proportional

to the imaginary component of the susceptibility

P = <E - dPnJdt> = VsQ 7X" u2/2 (25)

where PNL is the nonlinear polarization and the angular brackets denote averaging over the beam

interaction volume Vs. The fluctuation-dissipation theorem is (Ref. 6)

Xe" (qQ) = (11/2) [ 1 - exp(-hA?1kT) ] SE(q,fl) (26a)

which in the classical limit (kT >> hQ), reduces to the form

Xe"(q,fl) = (OW2kr) Se(q,fl) (26b)

where

Se(qA) = vI <8e(q,0) 8e(qt) > e-i~t dt (27)

is the spectral density of the fluctuations in the linear dielectric constant 8 that give rise to light

scattering noise.

Each of the preceding results may readily be expressed in tensor component form for

applications to anisotropic media. The scalar u, for example, is then replaced by the Maxwell

stress tensor in its most general form, with AE and 7E represented by second and fourth ranked

tensors, respectively.

Equations 25 through 27 are the appropriate generalization of our previously derived static

susceptibility relation, which was limited to degenerate beam interactions and did not include

power dissipation. To recover the special case, first note that the real and imaginary components

of X satisfy the Kramers-Kronig relation (Ref. 6):

Xe (q,0) = (I/x)! X" (q A) /l dQ

= (kT)-IVs< I&(q)12> (28)
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where the last equality follows upon substitution from Equations 26b and 27 for the imaginary

susceptibility component and the integral is over both positive and negative frequencies. From

Equation 28, and the above assignment of xe(qO) for a Kerr medium,

Xe' (qO) = 8x e2(q) (29)

the static susceptibility relation (Ref. 4)

< 18e(q)12> = 8gxkTE(q)/Vs .(30)

is immediately obtained. Equation 30 is the closure relation required for incorporation into

Equation 16c. Its present derivation is both more direct and more general than the

thermodynamic fluctuation approach used in Reference 5, which also allows for possible

q-dependence in the Kerr coefficient due to nonlocal interaction.

For the case of photorefractive media described in the preceding subsection, dielectric

fluctuations arise from thermal fluctuations in the space-charge field through the electro-optic

effect (Ref. 10). In this case, fluctuation variance is given by an expression which differs from

the right-hand side of Equation 30 only by the nondimensional factor [E(2)]2/2eoe2 (0) where e(2)

is the Pockels coefficient and the q dependence takes the same form as that obtained previously

for the nonlocal interaction described in Reference 5, with the range of correlations set by the

Debye screening length.
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5.0 APPLICATIONS TO TWO-WAVE MIXING AND COMPARISON WITH
EXPERIMENT

The first measurements of noise during two-wave mixing in a Kerr medium are reported in
References 8 and 9. Experiments were conducted at visible wavelengths using an aqueous
suspension of shaped microparticles as the nonlinear medium. Theoretical calculations and
computer simulations using a stochastic model for light-scattering noise gave excellent
agreement with the experimental results. This section presents a summary of those resurts.

5.1 ILLEQRY

A schematic illustration of the two-wave mixing geometry for amplification of a weak signal is
shown in Figure 5. Two laser beams of frequencies co, and o)2 = co, - f0 propagate through the

nonlinear medium and create a moving density grating response that preferentially deflects
energy from the high-frequency to the lcw-frequency beam. The solid lines depict the crests of
the field-induced grating of wave vector q - K1 - K2. Dashed lines represent a spontaneous
moving grating arising from thermal fluctuations in the medium. Some of these thermal gratings
will be in a proper configuration to deflect energy from the high-frequency to the low-frequency
wave, in a manner that is indistinguishable from the signal, to give a noise component
represented by the dashed arrow in the figure. For two incident plane waves, the total field is of
the form

E(r,t) = e1Ej(r) cos[ K1 • r - colt + 01(r)]

+ e2E2 (r) cos[ K2 • r - 02t + 02(r) (31)

where ej, Ej(r), and Oj(r) are the unit polarization vector, slowly varying amplitude, and slowly

varying phase of wave j.

The signal and noise gratings depicted schematically in Figure 5 are quantitatively described as
follows: For the signal grating (Ref. 8)

Ae(r,t) - alcos(q - r-Qt) + blsin(q • r-f2t) (32)

where

a, = (el • e2)e2 EIE2 /[1 + (iC) 2] (33)

and
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Figure 5. Two-wave mixing geometry.

b, = -(el "e2)e 2 E1E2 CM I + (Cft)2] (34)

are the in-phase and ic2 out-of-phase grating coefficients, respectively, for a Debye relaxation

medium.: For the noise grating, the coefficients a1j and ha are statistically distributed according

.to the bottom set of equations in Table 2 (Ref. 8).

The preceding expressions may be combined to obtain the total variation in dielectric constant

from both signal and noise contributions. When the result is substituted into the wave equation,

the various terms in the displacement vector give rise to scattering of electromagnetic energy into

different modes, characterized by specific wave vectors and frequencies. The most significant

contribution results from those terms that have minimum phase mismatch. Denoting these by

D(r,t), one finds (Ref. 8)

D(r,t) = co E(rt) + (1/2) (a1 + an) EI(r) cos ( K2 . r - wo2t + 02) el

+ (1/2) (a1 + an) E2(r) cos (K I r - wolt + e1) e2

- (112) (b, + bi2) E1(r) sin ( K 2 . r - ci2t + 02) el

+ (1/2) (b, + ba) E2(r) sin (K 1 r - wot + 01) e2. (35)
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Table 2. Signal and noise gratings for two-wave mixing.

q=KI-K 2  0 =coI - (02

Signal grating (field induced)

Ae(q,Q) = alcos(q • r-!t) + b1sin(q • r-!lt)

a, = e2 (el • e2) EIE 2 / [1 + (fh)2]

b, = -e2 (el • e2) EIE2 W [I + (•)2]

Noise 'ating (thermal)

a"cos(q • r - f1t) + basin(q • r - f•t)

"< a> = < bQ> = 0

"< a2ta > =f < b2a > =f (,r•) < 18e(q)12 > /I 1+ (jjj)2]

- (8kTIve 2/Vs) / [1 + (jjt)2]

Equation 35 describes an instantaneous polarization, or snapshot of the medium, that includes

contributions from both signal and phase-matched noise gratings. According to the adiabatic

approximation, this polarization will remain sensibly constant over time periods that are short in
comparison with the medium response time, t = N-', but still long compared with the transit time

of light through the medium.

Inserting Equation 35 into the wave equation (Eq. 16), making the slowly varying amplitude and

phase approximation, and equating the in-phase and out-of-phase terms, one finds

(K 1 - V) El = K2/4•.o(b 1 + ba) (e1 • e2) E2 - (aon2) El (36a)

(K1 V) 01 = K2/4 go (a, + aa) (el * e2) E2/E1  (36b)

for the pump wave and

(K2 • V) E2 = -K2/4 q (b, + ba) (e1 e2) E1 - (Oy2) E2  (36c)
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(K2 • V) 02 = K2/4 g (a, + an) (el • e2) E1/E2  (36d)

for the signal. These equations are identical to those obtained previously except for the presence

of the new noise terms, which result in fluctuations in both amplitude and phase. In the case that
the pump is much stronger than the signal (El >> E2 ), these fluctuations are much more

important for the signal than for the pump beam. The last terms in Equations 36a and 36c include

the effect of nonsaturable background loss, where ao is the attenuation coefficient for loss of

light intensity. For a nonabsorbing, isotropic medium in which losses are due to scattering alone,

a0 = (O•4i6n c4) Vs < 1&(q)12 > = 4/3 (2n v/c)4 kT e2 (37)

where v is the optical frequency.

Finally, one may obtain an expression for the power dissipated in the medium during two-wave

mixing. For a uniformly moving grating, the stored energy in the medium is constant and the

dissipated power per unit volume is (Ref. 8)

P = < E * dP/dt> = -(/167) b1 (el • e 2)EIE2 f. (38)

Equation 38 predicts an asymptotic level of power dissipation for OT approaching infinity. This

follows from the functional form of bl, exhibited in Equation 34, which in turn is a consequence

of the D6bye relaxation model. As expected, the fluctuating noise gratings make no contribution

to power dissipation.

5.2 EXPERIMENTAL RESULTS

Measurements of gain and noise were made using liquid suspensions of polytetrafluoroethylene

(FIFE) shaped microparticles as artificial Kerr media. Light-induced, particle-orientation

rearrangements account for optically-induced birefringence with consequent large nonlinear

optical response. Several studies have been carried out to characterize the linear and nonlinear

optical properties of these suspensions, and good agreement between theoretical predictions and

experimental results was found. This agreement is due in large part to the characteristics of the

suspensions, which fit an independent particle-single orientational relaxation time Debye model

remarkably well. Particles are ellipsoidal in shape (the dimensions are 0.4 x 0.2 x 0.2 gim) and

the particle polarizability tensor has corresponding symmetry. The particle suspensions are
highly monodisperse, and interparticle interactions are negligible even at relatively high volume

fractions (0.1-2%). In the present experiments, a 1 percent volume fraction of PTFE particles

suspended in a 65/35 water/glycerol host-liquid mixture was typically used. This mixture was
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chosen because it matches the average value of the particle refractive index no = 1.376, thus
minimizing the importance of light-scattering fluctuations due to the isotropic part of the particle

polarizability.

Figure 6 shows the experimental setup for nondegenerate two-wave mixing. The pump and the
probe waves are provided by splitting the 514-nm TEM00 output of a cw Argon-ion laser into a

1-W power pump beam and a 50-mW probe beam. The two beams eventually intersect at the

focus of the lens (L) within the sample at an angle of 5 deg. The beam waist size is about 100 pm

and the interaction length is 0.1 cm. Before entering the sample, the polarization direction of the

pump beam is rotated perpendicular to that of the probe so that only the orientational particle

gratings are generated in the suspension by the beam interference pattern.

Time Domain and
ow Frequency Domain Laser

Data Analysis
Ar-ion
514 nm
CW

L Beam

P Probe Beam • Splitter

Sape10 
kW/cr2 PZT

D 
Retarder M1

Plate

Figure 6. Schematic diagram of the two-wave mixing optical arrangement and electronics for
noise analysis. (L: focusing lens; M l: 100% mirror; PZT: piezoelectric transducer,
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The angular frequency shift Q required for the nondegenerate beam configuration is. provided to

the pump beam by the mirror M I that is mounted to a piezoelectric transducer (PZT). A

utiangular 8-Hz high-voltage wave is fed through the PZT to produce a periodic linear

displacement of the mirror with constant, sign-inverting speed. The consequent square-wave-like

angular frequency shift can be varied by either changing the amplitude or the frequency of the

mirror displacement. The periodic intensity gain of the probe beam is revealed by a low-noise

photodiode (D). A polarizer is placed before the photodiode to remove the polarized component

of the pump light scattered into the probe beam by the isotropic particle fluctuations. After a low-

pass electrical amplification (-3 dB at 3 kHz), the photodiode output is fed both into a digital

oscilloscope and into a 12-bit, PC-interfaced spectrum analyzer. For each value of the frequency

shift, the average value of the intensity gain was obtained by a digital average on the oscilloscope

while the spectral properties of the gain fluctuations were monitored on the spectrum analyzer.

Implementing this setup, particular care had to be taken to damp mechanical vibrations that could

add random phase shifts to the beams thus introducing spurious noise in the gain process.

Figure 7 (top) shows the experimental results for the probe intensity gain and noise fluctuations.

Pump light intensity in the sample was approximately 10 kW/cm 2 while the transmitted probe

power in the absence of the pump beam was 50 mW. The vertical bars report the transmitted

probe-beam power in watts as a function of the nondimensional frequency shift Qc, where

c = zR = 8.9 ms is the orientational response time as determined through independent

measurements. Each vertical bar is centered on the average value of the transmitted power and

the bar length reports the root-mean-square (RMS) value of the noise fluctuations on the same

scale. The RMS noise fluctuations are also shown in the figure on an expanded scale for clarity

(full circles) and were obtained by integration of the noise power spectrum over a collection

bandwidth of 60 Hz. The smooth curve is a fit to the data using a(P2) = C [1 + (Qr)2]i-1t2, which

is the form expected from the theory and will now be described.

For two incident plane waves, the total field is of the form given by Equation 31. Insertion into

the wave equation, making the slowly varying amplitude and phase approximation, and equating

the in-phase and out-of-phase terms, gives a set of four coupled equations (Eq. 36) describing the

evolution of the two amplitudes and two phases, which may be integrated using the stochastic

noise model (Ref. 6). In the absence of pump depletion and background loss, an analytic solution

to these equations may be obtained, which is sufficient for comparison with the present

measurements. Here, the solution is required for the weak probe beam E2(L), where L is the

beam interaction length, in the presence of a nondepleted pump El. The result, from Reference 8,

is
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Figure 7. Comparison of experimental and simulation results for two-wave mixing gain and
light-scattering noise.

E2(L) = exp(aSL)E2 (0) + (aNIcxS)[exp((asL) - 1] E, (39)

where

,Ms = (K/4E0) E2E, 2 flI/[1 + (fKr) 2] = h Qt/[1 + (Q-z)2] (40)
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and

aN = (K/4&0) ba (41)

In Equation 40, K = I KI I= IK2 I, EO is the background dielectric constant, e2 is the Kerr
coefficient, and 0 = col - o2. The last equality in Equation 41 defines h. In Equation 41, bil is the

quadrature component for a thermal fluctuation grating having the same orientational

configuration as the signal grating, thereby giving rise to a scattered light component that is
indistinguishable from the signal beam. Note that E2 and bil are off-diagonal components of

second-rank tensors, but may be treated here as scalars since in each case only one tensor
component is selected by the fixed polarizations of the writing beams.

Inspection of Equations 39-41 reveals that fluctuations in bt2 cause fluctuations in the amplitude
of the transmitted probe. In addition to bil, there is an in-phase noise component aj, which

results in fluctuations in the phase. The mean and variances for the grating amplitude fluctuations
(Table 2) are derived in Reference&:

"< a> = < b-> = 0 (42a)

"< a2 p > = < b2n > = (2CB) < I&(q)12 >/[ 1 +(•,z)] (42b)

where the dependence on frequency difference Q and response time r follows our assumption of

a single relaxation time Debye medium. The right-hand side of Equation 42b gives the noise
power over a frequency bandwidth B and is obtained by multiplying the result of Reference 8,
which gives the noise power on a per unit angular frequency basis, by 2xB. The right-hand side

of Equation 42b may be evaluated in terms of the nonlinear dielectric constant, or Kerr
coefficient, £2 using Equation 30, where q = K - K2 is the wave vector of the matched thermal

fluctuation grating and Vs is the scattering or beam interaction volume determined from the
product of the beam cross section area A and the interaction length L.

For comparison with experiment, Equation 39 was evaluated numerically using the stochastic
noise model (Ref. 6). The one adjustable parameter in the theory is the Kerr coefficient, and this
is obtained here from a fit to the gain curve, not to the noise. The gain curve shown in Figure 7
(bottom) was obtained using £2 = 3.6 x 10-7 cm3/erg, in reasonable agreement with the estimate
for this quantity obtained from previous nonlinear optics measurements: £2 = 2.5 x 10-7 cm 3/erg.

The remaining conditions used in the calculations are the same as those described above for the
experment. The simulation proceeds by the following steps: (1) A value for Qr is selected and

Equation 42 is used to obtain the mean and variance for the noise amplitude fluctuations over the
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measurement bandwidth B = 60 Hz. The fluctuations are assumed to be Gaussian and sampling

is achieved using a standard computer algorithm incorporating the Box-Muller transformation for

the generation of normal deviates from random numbers sampled uniformly on the interval (0,1).
(2) Equation 39 is evaluated for each sampled ba to give a solution for E2(L) and corresponding
amplified signal power P2 (L). Steps 1 and 2 are repeated on the order of a thousand times to

obtain a good statistical sampling of the noise over the full OT range of interest. Results of the

calculation are shown in Figure 7 (bottom). Note that both the experimental and theoretical gain

profiles follow frequency dispersion curves characteristic of the Debye relaxation model. More
importantly, there is excellent agreement between theory and experiment in regard to the RMS
values of the noise fluctuations, including their dependence on frequency shift. This agreement is

remarkable, in view of the lack of adjustable parameters in the theory.

Squaring the right-hand side of Equation 39 gives noise terms proportional to aN and to aN2 . In

most cases of interest, E2 (0) is sufficiently large that the latter term may be neglected, leaving the
cross term containing the product EIE 2(0). Then one finds for the standard deviation of the

power fluctuations in the amplified signal in the limit of small gain:

aT(P 2 ) = (4wB)1/2 (hL)1/2 [kT v P2(0)]1 /2 [1 + (fQr)2]-/ 2 (hL << 1) (43)

Since the maximum power gain (G = ehL) in the experiment is 1.05, the small gain

approximation used to derive Equation 7 is valid for the present discussion. Equation 43 shows
the origin of the [1 + (fT)2 ]-1/ 2 dependence seen in the measurements and provides an explicit

form for the prefactor C. Here P2 (0) is the incident signal power, P2 is the fluctuating signal
power at z = L, and a(P2) is the standard deviation of P2: a(P 2) = [<(P2)2> - <P 2>211/2.

The solid curve in Figure 7 (bottom) displays the analytical result given by Equation 43. The

open circles are numerical results obtained by Gaussian sampling using the stochastic noise
model---each circle mpresents an RMS value computed for 100 samples at a fixed value of CR.

The simulated noise is in excellent agreement with both the analytical and experimental results.
Finally, note that the noise fluctuations decrease monotonically with frequency unlike the
average gain, which peaks at OT = 1.

Equation 43 implies that the RMS amplitude of the noise fluctuations increases with the square
root of the incident probe power P2 (0). Figure 8 reports the experimental values of the RMS
noise power (triangles) as a function of the probe power for lir = 0. As can be seen, the square-

root dependence (full line) is well verified over a decade range.
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Figure 8. The RMS noise power as a function of probe power for Ot =0. (The experimental
data points [triangles] follow a square-root dependence on the probe power [solid
curvel. The single data point on the ordinate gives the RMS noise power measured in

the absence of the probe beam.)

Theory predicts that the RMS probe-power fluctuations should satisfy Equation 43 as long as
light-induced gratings are dominant with respect to thermal gratings. Equation 39 shows that for
an incident probe power of zero, output fluctuations will occur proportional to otN2. Note that the
noise fluctuations proportional to aN2, unlike those proportional to aN, do not vanish on time
averaging. Analysis similar to that used to derive Equation 43 gives

< P2(L) > = (nrB) (hL) (kTv) [1 + (OT)2].1 (44)

where < P2(L) > is the average power of the noise at z = L. The factor (kMv) is the Nyquist
expression for the thermal noise power radiated by a channel having a bandwidth equal to the
optical frequency v. Equation 44 yields a predicted average noise power at zero probe power of
0.2 ILW due entirely to scattered pump light. The stochastic noise model sampling confirms this
result and gives an RMS power of 0.28 ,tW. The RMS noise power was measured at zero signal
power by blocking the probe. The result of this measurement (1.8 g.W RMS) is represented by
the single data point appearing on the ordinate of Figure 8. At this low noise level, the
discrepancy between theory and experiment is much greater than for the previous comparisons
made with the probe beam on and most likely is due to extraneous sources of noise being present
in the measurement
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In summary, the first measurements of light-scattering noise during two-wave mixing in a Kerr
medium were described. Excellent quantitative agreement between the experimental results and
the tical predictions was obtained, with no adjustable parameters, using the stochastic noise
model for thermal light-scattering noise (Ref. 6) and its extension to two-wave mixing (Ref. 8).
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6.0 RESEARCH DIRECTIONS

Table 3 and Figures 9-11 describe the recendy completed results obtained for resonant media.
The model used is that of the damped harmonic oscillator. Noise arises from both thermal and

quantum fluctuations of the oscillator polarizability that give rise to scattered light. Our previous

results for general Kerr media are recovered as a special case in the high damping limit. For

example, the response curves shown in Figure 11 are identical to Equations 33 and 34 for the

Debye relaxation model Kerr medium.

Table 3. Light-scattering noise in resonant media.

Requires a unified description of quantum-thermal noise

Ouantumn correction

SE(q,Q) = Vs I <8e(qO) &8(q,t) > e-ira dt

Se,(q,-Q) = Vs I <&e(q,t) &E(qO) > •"•t dt

since <f'(q,t) 8e(q,0) > = <8e(q,0) &8(q,t) >.

Condition of detailed balance:

Se(q,-Ql) = exp (-hQ/kT) Se(q,fl)

Classically, the correlation function is real and

Se(q,-A) = Se(q,Ql).

Table 3 shows the fundamental nature of the changes that need to be made in the fluctuation

theorem to include quantum effects. The results described thus far in this report apply to the

thermal noise limit (Q << kT//) typical of slow media having large nonlinear optical coefficients.

In this limit, the maximum frequency difference Q is limited by the medium response time and

quantum noise effects, which can be dominant for Raman amplifiers (Ref. 11), may be neglected
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Figure 9. Results for damped oscillator, low damping.

as these ame orders of magnitude smaller than the noise described here. A soon-to-be-completed
publication will extend the theory to cases for which fl is comparable to or greater than kT/h in a
unified tratment of quantum-thermal noise.

With further development, the results may serve as the scientific basis necessary for the design of
new low-noise nonlinear optical materials-probably with best prospects in the general classes of
photuvfactive polymers and charge transfer media. Furthermore, the results can provide the
foundation for investigations into the noise properties of optical communication channels and
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Results for Beta - 0.1; wo - 1
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Figure 10. Results for damped oscillator, intermediate damping.

optical storage media. These investigations can include determination of the Shannon channel
capacity (some work along these lines has already been carried out for photorefractive media)
and new applications of optical signal processing and computing (e.g., the optical wavelet
transform and optical methods for signal and image compression).
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Results for Beta - 3.1; wO = 1
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Figure 11. Results for damped oscillator, high damping.
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